Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.14.22280783

ABSTRACT

The 2022 multi-country monkeypox outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early human monkeypox virus infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the current outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there is an urgent need for a more sensitive and broadly applicable sequencing approach. Amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for monkeypox virus with amplicon-based and metagenomic sequencing approaches. Upon comparison, we found notably higher genome coverage across the virus genome, particularly in higher PCR cycle threshold (lower DNA titer) samples, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach. By sending out primer pool aliquots to laboratories across the United States and internationally, we validated the primer scheme in 12 public health laboratories with their established Illumina or Oxford Nanopore Technologies sequencing workflows and with different sample types across a range of Ct values. Our findings suggest that amplicon-based sequencing increases the success rate across a wider range of viral DNA concentrations, with the PCR Ct value threshold at which laboratories were able to achieve 80% genome coverage at 10X ranging between Ct 25-33. Therefore, it increases the number of samples where near-complete genomes can be generated and it provides a cost-effective and widely applicable alternative to metagenomics for continued human monkeypox virus genomic surveillance. Importantly, we show that the human monkeypox virus primer scheme can be used with currently implemented amplicon-based SARS-CoV-2 sequencing workflows, with minimal change to the protocol.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.20.21265137

ABSTRACT

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL